DERIVATIVES OF CONDENSED THIENO[2,3-*d*]-PYRIMIDINES. 20*. SYNTHESIS OF 2-SUBSTITUTED 5,6-DIHYDRO-8H-PYRANO[4',3':4,5]THIENO[2,3-*d*]PYRIMIDIN-4(3H)-ONES AND 5,6,7,8-TETRAHYDROBENZO-[*b*]THIENO[2,3-*d*]PYRIMIDIN-4-ONES

A. P. Mkrtchyan and A. S. Noravyan

We have developed a method for obtaining 2-substituted 3-amino-6,6-dimethyl-5,6-dihydro-8Hpyrano[4',3':4,5]- and 5,6,7,8-tetrahydrobenzo[b]thieno[2,3-d]pyrimidin-4(3H)-ones, converted by deamination to the corresponding dihydropyranothieno-3H-pyrimidinones.

Keywords: substituted 5,6-dihydro-8H-pyrano[4',3':4,5]thieno[2,3-*d*]pyrimidin-4(3H)-ones, 5,6,7,8-tetra-hydrobenzo[*b*]thieno[2,3-*d*]pyrimidin-4(3H)-ones, acylation, deamination.

Continuing our research on synthesis of condensed thieno[2,3-*d*]pyrimidin-4-ones [2], we have developed a convenient method for obtaining 2-substituted 3-amino-6,6-dimethyl-5,6-dihydro-8H-pyrano[4',3':4,5]- and 5,6,7,8-tetrahydrobenzo[*b*]thieno[2,3-*d*]pyrimidin-4(3H)-ones **3a-g** and **4a-e** respectively, without separating the intermediate N-acylated 2-amino-3-ethoxycarbonylthiophenes, by treatment of the reaction mixture after acylation of compounds **1**, **2** with hydrazine hydrate. The method is convenient, and ensures a good yield of the end products **3a-g**, **4a-e**.

1, **3a-g**, **5a**, **b** X = O, R = Me, **2**, **4a-e**, **6a**, **b** $X = CH_2$, R = H; **3a**, **4a**, **6a** $R^1 = -(CH_2)_6Me$, **3b**, **4b**, **5a**, **6b** $R^1 = -(CH_2)_7Me$, **3c**, **4c** $R^1 = -CH_2CHMe_2$, **3d**, **4d** $R^1 = -CH_2C_6H_4OMe-4$, **3e**, **4e**, **5b** $R^1 = -(CH_2)_2Ph$, **3f** $R^1 = -CH_2C_6H_3CI_2-2$, **6**, **3g** $R^1 = -CH_2C_6H_3(OMe)_2-3$, **4**

* For Communication 19, see [1].

A. L. Mndzhoyan Institute of Fine Organic Chemistry, National Academy of Sciences of the Republic of Armenia, Yerevan 375014; e-mail: amartirosyam@web.am. Translated from Khimiya Geterotsiklicheskikh Soedinenii, No. 3, pp. 441-444, March, 2006. Original article submitted September 20, 2000.

Earlier [3] we developed a method for deamination of 2-substituted 3-aminothieno[2,3-*d*]pyrimidin-4(3H)-ones to form 2-substituted 3H-thieno[2,3-*d*]pyrimidin-4(3H)-ones by treatment with a mixture of nitrous and acetic acids. We used this method to obtain the corresponding $2-R^1-3H$ -pyrimidin-4-ones **5a,b**, **6a,b** in high yields from compounds **3b,e**, **4a,b**.

Com-	Empirical formula	Found, % Calculated, %		mp, °C	Yield %
pound		Ν	S	r,	
3a	$C_{18}H_{27}N_3O_2S$	$\frac{12.11}{12.02}$	$\frac{9.25}{9.20}$	143-145	64.7
3b	$C_{19}H_{29}N_3O_2S$	$\frac{11.60}{11.56}$	$\frac{8.90}{8.82}$	186-188	88.8
3c	$C_{15}H_{21}N_{3}O_{2}S$	$\frac{13.70}{13.66}$	$\frac{10.52}{10.43}$	162-163	83.3
3d	$C_{19}H_{21}N_3O_3S$	$\frac{11.45}{11.31}$	$\frac{8.70}{8.63}$	199-200	78.5
3e	$C_{19}H_{21}N_3O_2S$	$\frac{11.93}{11.82}$	$\frac{9.22}{9.02}$	178-179	62.5
3f	$C_{18}H_{17}Cl_{2}N_{3}O_{2}S$	$\frac{10.36}{10.25}$	<u>7.94</u> 7.81	227-228	61.0
3g	$C_{20}H_{23}N_{3}O_{4}S$	$\frac{10.55}{10.47}$	<u>8.19</u> 7.99	194-195	75.6
4a	$C_{17}H_{25}N_{3}OS$	$\frac{13.46}{13.15}$	$\frac{10.26}{10.03}$	120-121	70.0
4b	$C_{18}H_{27}N_3OS$	$\frac{12.64}{12.59}$	<u>9.87</u> 9.61	126-128	67.2
4c	$C_{14}H_{19}N_3OS$	$\frac{15.37}{15.14}$	$\frac{11.77}{11.56}$	149-152	85.08
4d	$C_{18}H_{19}N_3O_2S$	$\frac{12.53}{12.30}$	$\frac{9.62}{9.40}$	156-158	68.40
4 e	$C_{18}H_{19}N_3OS$	$\frac{13.02}{12.91}$	<u>9.98</u> 9.85	200-202	73.15
5a	$C_{19}H_{28}N_2O_2S$	$\frac{8.15}{8.03}$	<u>9.34</u> 9.20	186-188	88.80
5b	$C_{19}H_{20}N_2O_2S$	$\frac{8.39}{8.22}$	<u>9.42</u> 9.41	226-227	80.00
6a	$C_{17}H_{24}N_2OS$	$\frac{9.36}{9.20}$	$\frac{10.60}{10.53}$	170-172	89.70
6b	$C_{18}H_{26}N_2OS$	$\frac{8.93}{8.80}$	$\frac{10.18}{10.06}$	157-158	98.50

TABLE 1. Characteristics of Synthesized Compounds

TABLE 2. IR Spectra and ¹H NMR Spectra of Synthesized Compounds

Com- pound	IR spectrum, v, cm ⁻¹	¹ H NMR spectrum, δ , ppm (<i>J</i> , Hz)
1	2	3
3a	1665-1670 (CO), 3170-3345 (NH ₂)	4.84 (2H, s, NH ₂); 4.80 (2H, t, $J = 1.8$, H ₂ -8,8); 3.01 (2H, t, $J = 1.8$, H ₂ -5,5); 2.99 (2H, t, $J = 8.0$, 2-CH ₂); 1.80 (2H, m, 2-CH ₂ CH ₂); 1.50-1.25 (8H, m, 2-CH ₂ CH ₂ (CH ₂) ₄); 1.35 (6H, s, 6.6-(CH ₃) ₂): 0.90 (3H, t, $J = 6.8$, 2-(CH ₂) ₆ CH ₃)
3b	1665-1672 (CO), 3173-3325 (NH ₂)	4.83 (2H, br. s, NH ₂); 4.80 (2H, t, $J = 1.8$, H ₂ -8,8); 3.00 (2H, t, $J = 1.8$, H ₂ -5,5); 2.99 (2H, t, $J = 8.0$, 2- <u>CH₂</u>); 1.80 (2H, m, 2-CH ₂ <u>CH₂</u>); 1.25-1.50 (10H, m, 2-CH ₂ <u>CH₂(CH₂)₅</u>); 1.35 (6H, s, 6,6-(CH ₃) ₂); 0.90 (3H, t, $J = 6.8$, 2-(CH ₂) <u>7CH₃</u>)
3c	1660-1675 (CO), 3140-3340 (NH ₂)	4.83 (2H, s, NH ₂); 4.79 (2H, t, $J = 1.7$, H ₂ -8,8); 3.00 (2H, t, $J = 1.7$, H ₂ -5,5); 2.90 (2H, d, $J = 7.2$, 2- <u>CH₂</u>); 2.29 (1H, d, $J = 6.6$, 2-CH ₂ CH); 1.34 (6H, s, 6,6-(CH ₃) ₂); 1.03 (6H, d, $J = 6.6$, 2-CH ₂ CH(<u>CH₃</u>) ₂)

TABLE 2 (continued)

1	2	3
3d	1680-1700 (CO), 3125-3335 (NH ₂)	7.28 (2H, d, $J = 8.7$, H_{Ar}); 6.86 (2H, d, $J = 8.7$, H_{Ar}); 4.82 (2H, s, NH ₂); 4.81 (2H, t, $J = 1.9$, H ₂ -8,8); 4.29 (2H, s, 2-CH ₂); 3.79 (3H, s, OCH ₃); 2.99 (2H, t, $J = 1.9$, H ₂ -5,5)
3e	1675-1680 (CO), 3155-3320 (NH ₂)	7.20-7.35 (5H, m, H _{Ar}); 4.67 (2H, br. s, NH ₂); 4.81 (2H, br. s, H ₂ -8,8); 3.32-3.15 (4H, m, 2- <u>CH₂CH₂Ph</u>); 3.01 (2H, br. s, H ₂ -5,5); 1.35 (6H, s, 6,6-(CH ₃) ₂)
3f	1685-1660 (CO), 3200-3395 (NH ₂)	7.38 (2H, m, H _{At}); 7.27 (1H, m, H _{At}); 5.79 (2H, br. s, NH ₂); 4.67 (2H, t, $J = 1.9$, H ₂ -8,8); 4.64 (2H, s, 2-CH ₂); 3.90 (2H, t, $J = 1.9$, H ₂ -5,5); 1.30 (6H, s, 6,6-(CH ₃) ₂)
3g	1660-1680 (CO), 3170-3380 (NH ₂)	$\begin{array}{l} 6.92 \ (1H, d, J=1.8, H_{\rm Ar}); \ 6.89 \ (1H, dd, J_1=8.1, J_2=1.8, H_{\rm Ar}); \\ 6.81 \ (1H, d, J=8.1, H_{\rm Ar}); \ 4.87 \ (2H, br. s, NH_2); \ 4.81 \ (2H, t, J=1.8, H_{\rm Ar}); \\ H_2-8,8); \ 4.29 \ (2H, s, 2-\underline{CH_2}); \ 3.00 \ (2H, t, J=1.8, H_2-5,5); \\ 3.86 \ (6H, s, (OCH_3)_2); \ 1.35 \ (6H, s, 6,6-(CH_3)_2) \end{array}$
4a	1660-1680 (CO), 3160-3380 (NH ₂)	4.83 (2H, br. s, NH ₂); 2.99 (2H, m, H ₂ -5,5); 2.76 (2H, m, H ₂ -8,8); 2.97 (2H, t, $J = 8.0, 2-\underline{CH_{2}}$ -); 1.78 (2H, m, 2-CH ₂ <u>CH₂</u> -); 1.86 (4H, m, H ₂ -6,6, H ₂ -7,7); 1.25-1.50 (8H, m, 2-CH ₂ -CH ₂ (<u>CH₂</u>) ₄); 0.89 (3H, t, $J = 6.6, 2-(CH_2)_6\underline{CH_3}$)
4b	1670-1680 (CO), 3165-3390 (NH ₂)	4.82 (2H, br. s, NH ₂); 2.77 (2H, t, $J = 7.0, 2-\underline{CH}_2-$); 2.75 (2H, m, H ₂ -5,5); 2.96 (2H, m, H ₂ -8,8); 1.87 (4H, m, H ₂ -6,6, H ₂ -7,7); 1.80 (2H, m, 2-CH ₂ <u>CH</u> ₂ -); 1.20-1.50 (10H, m, 2-CH ₂ CH ₂ (<u>CH</u> ₂) ₅); 0.97 (3H, t, $J = 6.7, 2-(CH_2)_7\underline{CH}_3$)
4c	1660-1690 (CO), 3170-3355 (NH ₂)	4.82 (2H, br. s, NH ₂); 2.77 (2H, m, H ₂ -5,5); 3.00 (2H, m, H ₂ -8,8); 1.87 (4H, m, H ₂ -6,6, H ₂ -7,7); 2.89 (2H, d, <i>J</i> = 7.2, 2- <u>CH₂</u> CH); 2.29 (1H, sept, <i>J</i> = 6.6, 2-CH ₂ <u>CH</u>); 1.02 (6H, d, <i>J</i> = 6.6, 2-CH ₂ CH(<u>CH₃)</u> ₂)
4d	1680-1690 (CO), 3175-3385 (NH ₂)	7.26 (2H, d, $J = 8.7$, H_{Ar}); 6.85 (2H, d, $J = 8.7$, H_{Ar}); 4.81 (2H, br. s, NH ₂); 4.26 (2H, s, 2-CH ₂); 3.79 (3H, s, O <u>CH₃</u>); 2.79 (2H, m, H ₂ -8,8); 2.99 (2H, m, H ₂ -5,5); 1.87 (4H, m, H ₂ -6,6, H ₂ -7,7)
4e	1665-1685 (CO), 3175-3390 (NH ₂)	7.20–7.35 (5H, m, H _{Ph}); 3.12 (2H, t, $J = 8.0, 2-\underline{CH}_2$); 3.35 (2H, t, $J = 8.0, \underline{CH}_2C_6H_5$); 4.70 (2H, br. s, NH ₂); 2.78 (2H, m, H ₂ -5,5); 3.00 (2H, m, H ₂ -8,8)
5a	1665-1670 (CO), 3170 (NH)	11.72 (1H, br. s, NH); 4.83 (2H, br. s, H ₂ -8,8); 3.02 (2H, br. s, H ₂ -5,5); 2.73 (2H, t, $J = 7.1$, 2- <u>CH₂</u>); 1.85 (2H, q, J = 7, 2-CH ₂ <u>CH₂</u>); 1.20-1.50 (10H, m, 2-CH ₂ CH ₂ CH ₂);); 0.89 (3H, t, $J = 6.7$, 2-(CH ₂) ₇ <u>CH₃</u>); 1.38 (6H, s, 6,6-(CH ₃) ₂)
5b	1670-1675 (CO), 3170 (NH)	12.54 (1H, br. s, NH); 7.18-7.30 (5H, m, H_{Ph}); 4.84 (2H, t, $J = 1.7$, H_2 -8,8); 3.03 (2H, t, $J = 1.7$, H_2 -5,5); 3.05-3.20 (4H, m, 2- <u>CH₂CH₂C</u> ₆ H ₃); 1.35 (6H, s, 6,6-(CH ₃) ₂)
6a	1670-1673 (CO), 3185 (NH)	11.91 (1H, s, NH); 3.02 (2H, m, H ₂ -8,8); 2.79 (2H, m, H ₂ -5,5); 1.88 (4H, m, H ₂ -6,6, H ₂ -7,7); 2.73 (2H, t, $J = 7.8$, 2-CH ₂); 1.83 (2H, m, 2-CH ₂ CH ₂); 1.24-1.46 (8H, m, 2-CH ₂ CH ₂ (CH ₂) ₄); 0.88 (3H, t, $J = 6.6$, 2-(CH ₂) ₆ CH ₃)
6b	1661-1675 (CO), 3180 (NH)	11.90 (1H, br. s, NH); 3.00 (2H, br. s, H ₂ -5,5); 2.80 (2H, br. s, H ₂ -8,8); 1.84 (4H, m, H ₂ -6,6, H ₂ -7,7); 2.73 (2H, t, $J = 6.2, 2-\underline{CH}_2$); 1.80 (2H, m, 2-CH ₂ CH ₂); 1.20-1.50 (10H, m, 2-CH ₂ CH ₂ (CH ₂) ₅); 0.90 (3H, t, $J = 7.0, 2-(CH_2)_7\underline{CH}_3$)

EXPERIMENTAL

The ¹H NMR spectra were obtained on a Varian Mercury-300 spectrometer (300 MHz), provided under a grant within the US CRDF RESC 17-S program. The solvent was $CDCl_3$ or DMSO-d₆ (in the case of compound **2f**). The IR spectra were taken on a UR-20 in nujol. The purity of the compounds obtained was monitored by TLC on Silufol UV-254 plates in the system 1:1:1 chloroform–ethyl acetate–acetone or 2:1 ethyl alcohol–chloroform.

The characteristics of the synthesized compounds are given in Tables 1 and 2.

 $2-R^1-3-Amino-6,6-dimethyl-5,6-dihydro-8H-pyrano[4',3':4,5]thieno[2,3-d]pyrimidin-4(3H)-ones 3a-e and -5,6,7,8-tetrahydrobenzo[b]thieno[2,3-d]pyrimidin-4(3H)-ones 4a-e. Dry triethylamine (0.01 mol) was added to a solution of compounds 1 and 2 (0.01 mol) in dry benzene (30 ml), and then the corresponding acid chloride (0.01 mol) in benzene (5 ml) was added dropwise. The mixture obtained was boiled for 4 h, then water (30 ml) was added and the benzene was evaporated off. The precipitate formed was filtered out, washed with water, and boiled for 8 h with hydrazine hydrate (5 ml) and$ *n*-butanol (15 ml). The crystals of products 3 and 4 precipitating out upon cooling were filtered out, washed with alcohol and then water, and then dried at 50°C and recrystallized from alcohol.

2-R¹-3H-6,6-Dimethyl-5,6-dihydro-8H-pyrano[4',3':4,5]thieno[2,3-*d*]pyrimidin-4(3H)-ones 5a,b and -5,6,7,8-tetrahydrobenzo[*b*]thieno]2,3-*d*]pyrimidin-4(3H)-ones 6a,b. A solution of sodium nitrite (1.0 g, 0.015 mol) in water (3 ml) was added dropwise to a solution of compounds 3b,e and 4a,b (0.01 mol) in acetic acid (15 ml) at room temperature. After 5 h, the mixture was diluted with water and recrystallized from a 10:1 *n*-butanol–DMF mixture. The crystals of product 5 and 6 were filtered out and dried.

REFERENCES

- 1. A. Sh. Oganisyan, A. S. Noravyan, A. A. Karapetyan, M. S. Aleksanyan, and Yu. T. Struchkov, *Khim. Geterotsikl. Soedin.* 85 (2004).
- 2. A. P. Mkrtchyan, S. G. Kazaryan, A. S. Noravyan, R. A. Akopyan, I. A. Dzhagatspanyan, N. E. Akopyan, and A. G. Akopyan, *Khim.-Farm. Zh.*, **19**, 557 (1985).
- 3. S. G. Kazaryan, A. S. Noravyan, and G. A. Gevorgyan, *Khim. Geterotsikl. Soedin.*, 941 (1999).